
AN002 Tutorial: StellarIP Interface to AXI                      r1.0 

 

 

AN002                                                                 www.4dsp.com                                                                   page 1 of 28 

 

 

 

 

Tutorial 

StellarIP Interface 

To 

AXI Interface  
 

 

4DSP LLC  

Email: support@4dsp.com  

This document is the property of 4DSP LLC and may not be copied nor communicated to a third party 

without the written permission of 4DSP LLC. 

© 4DSP LLC 2014 

 

 

 

http://www.4dsp.com/
mailto:support@4dsp.com


AN002 Tutorial: StellarIP Interface to AXI                      r1.0 

 

 

AN002                                                                 www.4dsp.com                                                                   page 2 of 28 

Revision History 

 

Date Revision Revision 

2014-07-18 Initial release 1.0 

   

   

   

   

   

   

   

   

   

   

  

http://www.4dsp.com/


AN002 Tutorial: StellarIP Interface to AXI                      r1.0 

 

 

AN002                                                                 www.4dsp.com                                                                   page 3 of 28 

Table of Contents 

1 Introduction ......................................................................................................................... 4 

1.1 Overview.................................................................................................................................. 4 

1.2 Requirements .......................................................................................................................... 4 

1.3 Terms and definitions .............................................................................................................. 4 

2 Obtaining 4DSP IP Source Code ............................................................................................. 5 

2.1 Locate the VHDL source code. ................................................................................................. 5 

2.2 Copy the required IP source files. ........................................................................................... 5 

3 Conversion entities............................................................................................................... 7 

3.1 Wormhole Output to AXI-Stream Master ............................................................................... 7 

3.2 Wormhole Input to AXI-Stream Slave ..................................................................................... 8 

3.3 StellarIP Command to AXI-Lite ................................................................................................ 8 

4 Wrapping into AXI .............................................................................................................. 10 

5 Simulate ............................................................................................................................ 12 

5.1 File descriptions ..................................................................................................................... 12 

5.2 Creating the project .............................................................................................................. 14 

5.3 Creating the test bench ......................................................................................................... 17 

5.4 Running Simulation ............................................................................................................... 17 

5.4.1 Command Interface ....................................................................................................... 17 

5.4.2 ADC and DAC Interfaces ................................................................................................ 18 

6 Synthesize .......................................................................................................................... 19 

6.1 File Descriptions .................................................................................................................... 19 

File or Folder ................................................................................................................................. 19 

6.2 Modifying the project for synthesis ...................................................................................... 20 

6.3 Creating the top level ............................................................................................................ 22 

6.4 Running and Initialization ...................................................................................................... 23 

6.4.1 Initialization Script ......................................................................................................... 23 

6.5 Capturing ADC Data ............................................................................................................... 24 

6.6 DAC Results ........................................................................................................................... 26 

7 References ......................................................................................................................... 28 

 

  

http://www.4dsp.com/


AN002 Tutorial: StellarIP Interface to AXI                      r1.0 

 

 

AN002                                                                 www.4dsp.com                                                                   page 4 of 28 

1 Introduction 
StellarIP is a block-based IP integration solution similar to Xilinx Vivado IP Integrator. One important 

difference is that StellarIP blocks generally do not use AXI Interfaces. Since the StellarIP Catalog has 

fully functional IP for all 4DSP Hardware including host interfaces, memory controllers, and FMC 

Board Controllers, there might be a desire to reuse this code within a system using AXI Interfaces. 

This document is meant to be a guided description on how to convert a typical StellarIP block to have 

an AXI Interface. 

 

To make this guide concrete the FMC110 IP Block (sip_fmc110) will be used, but the techniques can 

be applied to any StellarIP Block. The FMC110 IP Block is an Interface Controller for a 4DSP FMC110 

daughter card which is a dual channel 12-bit ADC and a dual channel 16-bit DAC.  The FMC110 

controller is able to configure the clock tree, ADCs and DACs as well as capture data from the ADC 

and send data to the DAC.  

 

1.1 Overview 

To convert the FMC110 IP Block to AXI we first obtain the source code and create an AXI wrapper 

around it. At this point the interface conversion is complete but we continue with a simulation to 

gain confidence and finally build a design targeting a Xilinx VC707 development board to prove 

functionality. 

 

1.2 Requirements 

The following tools are required to completely follow this tutorial: 

- 4DSP FMC110 Daughter Card 

- Xilinx VC707 Carrier Board  

- 4DSP Board Support Package  

- Xilinx Vivado 2014.1 or later  

- Python Programming Language Interpreter 

- Analog Devices VisualAnalog 

Please refer to the Xilinx user guides, 4FM Getting Started Guide, and other 4DSP documents to 

make sure all of these are properly installed. 

 

1.3 Terms and definitions  

Throughout the document the following terms are used with the indicated definitions 

Entity  A VHDL keyword to define an interface. More abstractly it can represent a 
functional block or an actual file with VHDL code. 

StellarIP Block or Star All source code that makes up a StellarIP Block. A top level entity and all 
sub-entities.  

Interface or  Channel  A collection of signals.  

http://www.4dsp.com/


AN002 Tutorial: StellarIP Interface to AXI                      r1.0 

 

 

AN002                                                                 www.4dsp.com                                                                   page 5 of 28 

2 Obtaining 4DSP IP Source Code 
All 4DSP Hardware comes with a Board Support Package that includes an FPGA reference design that 

that exercises the functionality of the hardware. Since in this tutorial we want to take the FMC110 

StellarIP Block and convert it to have an AXI-Interface we first need to obtain all the source code we 

are going to reuse. 

 

2.1  Locate the VHDL source code.  

It is typically located in the star lib folder “/star_lib/sip_fmc110”. 

 

2.2 Copy the required IP source files. 

The FMC110 IP is designed to work with many different carrier boards having different FPGAs so 

there might be different version of files that are used with different FPGAs. To know which files are 

needed a list is provided depending on what FPGA is being used.  

 

Table 1: Source List 

File Ending  Description 

_v7.lst Design files used with a Virtex-7 FPGA 

_k7.lst Design files used with a Kintex-7 FPGA 

_v6.lst Design files used with a Virtex-6 FPGA 

 

Since we are targeting a VC707 Carrier Board which has a Virtex-7 FPGA we look in the *_v7.lst file 

and copy each of the listed files in “/star_lib/sip_fmc110/sip_files/sip_fmc110_v7.lst” to a local 

directory called “Src”. 

 

Src/ 

└── sip_fmc110 

    ├── ad9517_init_mem.ngc 

    ├── ad9517_init_mem.vhd 

    ├── ads5400_fifo.vhd 

    ├── ads5400_init_mem.ngc 

    ├── ads5400_init_mem.vhd 

    ├── ads5400_phy_fifo.ngc 

    ├── ads5400_phy_fifo.vhd 

    ├── ads5400_phy_sp_v7.vhd 

    ├── ads5400_storage_fifo.ngc 

    ├── ads5400_storage_fifo.vhd 

http://www.4dsp.com/


AN002 Tutorial: StellarIP Interface to AXI                      r1.0 

 

 

AN002                                                                 www.4dsp.com                                                                   page 6 of 28 

    ├── bit_align_machine.vhd 

    ├── dac5681z_init_mem.ngc 

    ├── dac5681z_init_mem.vhd 

    ├── dac5681z_phy_fifo.ngc 

    ├── dac5681z_phy_fifo.vhd 

    ├── dac5681z_phy_v7.vhd 

    ├── dac5681z_wfm_ctrl.vhd 

    ├── dac5681z_wfm_dpram.ngc 

    ├── dac5681z_wfm_dpram.vhd 

    ├── dac5681z_wfm_input_fifo.ngc 

    ├── dac5681z_wfm_input_fifo.vhd 

    ├── dac5681z_wfm_output_fifo.ngc 

    ├── dac5681z_wfm_output_fifo.vhd 

    ├── dac5681z_wfm.vhd 

    ├── dac_mmcm.vhd 

    ├── dac_mmcm.xco 

    ├── fmc110_ad9517_ctrl.vhd 

    ├── fmc110_ads5400_ctrl.vhd 

    ├── fmc110_cpld_ctrl.vhd 

    ├── fmc110_ctrl.vhd 

    ├── fmc110_dac5681z_ctrl.vhd 

    ├── fmc110_if_v7.vhd 

    ├── fmc110_stellar_cmd.vhd 

    ├── pack_16to12.vhd 

    ├── pulse2pulse.vhd 

    ├── serdes_v7.vhd 

    ├── sip_fmc110.vhd 

    └── sip_freq_cnt16.vhd 

 
  

http://www.4dsp.com/


AN002 Tutorial: StellarIP Interface to AXI                      r1.0 

 

 

AN002                                                                 www.4dsp.com                                                                   page 7 of 28 

3 Conversion entities 
In the majority of cases StellarIP Blocks have just three types of interfaces: Data Wormhole Inputs 

(wh_in), Data Wormhole Outputs (wh_out) and StellarIP Commands (cmd_in and cmd_out). They will 

be converted into AXI4-Stream Slave, AXI4-Stream Master, and AXI4-Lite Slave interfaces 

respectively. Example entities to perform the interface conversion have been provided. 

 

Src/ 

└── conversion 

    ├── axistream_to_whin.vhd 

    ├── delay_bit.vhd 

    ├── stellarcmd_to_axilite.vhd 

    ├── axis2wh_fifo.ngc 

    ├── axis2wh_fifo.vhd 

    └── whout_to_axistream.vhd 

 

Table 2: Conversion Entities 

Conversion Entity From Interface To Interface Used For 

stellarcmd_to_axilite.vhd StellarIP Command AXI4-Lite Slave FMC1110 Commands 

axistream_to_whin.vhd Wormhole Input AXI4-Stream Slave FMC110 DAC0/DAC1 

whout_to_axistream.vhd Wormhole Output AXI4-Stream Master  FMC110 ADC0/ADC1 

 

3.1 Wormhole Output to AXI-Stream Master 

A StellarIP output channel is typically made up of three signals: DATA, VALID and STOP. This works as 
expected: DATA contains the output data, VALID is HIGH when DATA holds valid data and STOP 
indicates that the receiver can no longer accept data and we should stop sending. 
 
The conversion between a StellarIP output channel and an AXI-Stream Master is straight forward 
connection because the channels are mostly compatible.  The only difficulty is that when a STOP is 
asserted in a StellarIP Interface data will not immediately stop flowing, it might take up-to 8 cycles, 
unlike with TREADY. To accommodate this we use a FWFT FIFO.  

Wormhole Out
To

AXI-Stream Master
STOP

 

Figure 1: whout_to_axistream.vhd 

 

http://www.4dsp.com/


AN002 Tutorial: StellarIP Interface to AXI                      r1.0 

 

 

AN002                                                                 www.4dsp.com                                                                   page 8 of 28 

All the signals in an AXI-Stream channel, except for ACLK, ARESETn and TVALID are optional. The 
other signals are set to their default values, see the AXI-Stream Standard for details.  

 

3.2 Wormhole Input to AXI-Stream Slave 

A StellarIP input channel is typically made up of three signals: DATA, VALID and STOP. This works as 
expected: the signal DATA contains the input data, the signal VALID is HIGH when the signal DATA 
holds valid data and the signal STOP provides back pressure when valid data can no longer be 
accepted. 
 
The conversion between a StellarIP input channel and an AXI-Stream Slave is straight forward 
because the interfaces are compatible. In the AXI-Stream standard all signals expect for ACLK, 
ARESETn and TVALID are optional giving a straight forward conversion. 

Wormhole In
To

AXI-Stream Slave
STOP

 

Figure 2: axistream_to_whin.vhd 

 
 

3.3 StellarIP Command to AXI-Lite 

A StellarIP command interface is generally made of two signals: CMD and CMD_VALID. The command 
signal is 64-bits wide. 
 

Table 3: StellarIP Command Format 

Range 63...60 59..32 31..0 

Field CMD Address Data 

Description The command defines 
what is in the other 
fields, it can be one of 
the following: 
CMD_WR         = 0b0001 
CMD_RD          = 0b0010 
CMD_RD_ACK = 0b0100 

Contains the address 
which we are trying 
to write to or read to. 

Contains the data we are going to 
write when sent with CMD_WR. 
Ignored when sent with CMD_RD. 
Contains the read data when 
received with CMD_RD_ACK. 

 
The interface is not bidirectional and require two pairs for writing and reading; CMD_IN, 
CMD_IN_VALID, CMD_OUT and CMD_OUT_VALID. The command interface can be thought as a 
distributed RAM with an address range which we read and write from. The conversion entity which 
has been provided, stellarcmd_to_axilite.vhd, is loosely based on the Xilinx AXI GPIO IP. 

http://www.4dsp.com/


AN002 Tutorial: StellarIP Interface to AXI                      r1.0 

 

 

AN002                                                                 www.4dsp.com                                                                   page 9 of 28 

CMD_OUT

StellarIP CMD
To

AXI-Lite Slave

CMD_OUT_VAL

CMD_IN

CMD_IN_VAL

awready

wdata

wready

bresp

araddr

arvalid

arready

rdata

rresp

rvalid

rready

Write Address 
Channel

Write Data
Channel

Write Response
Channel

Read Address
Channel

Read Data
Channel

 

Figure 3: stellarcmd_to_axilite.vhd 

 
The conversion is done by accepting a CMD_IN StellarIP command and issuing an AXI-Lite command 
and also by accepting an AXI-Lite command and issuing a CMD_OUT StellarIP command. The 
conversion can be best understood by becoming familiar with the AXI-Lite Standard. As an example, 
image a write of 0xAAAAAAAA to address 0x7. The address would come from the Write Address 
Channel and the data would come from the Write Data Channel. These would be combined to form 
the following StellarIP command: 

| 0x1  |  0x0000007 | 0xAAAAAAAA | 

The command would be sent out CMD_OUT and a reply would be sent through the Write Response 
Channel.  
 
 
  

http://www.4dsp.com/


AN002 Tutorial: StellarIP Interface to AXI                      r1.0 

 

 

AN002                                                                 www.4dsp.com                                                                   page 10 of 28 

4 Wrapping into AXI 
At this point we have the source code for the StellarIP Block we are going to reuse and the 

conversion entities that help speed up the process. Looking at top level entity, sip_fmc110.vhd, for 

the FMC110 IP we can see that we have two wh_in interfaces for each of the DACs, two wh_out 

interfaces for each of the ADCs, and the command interface; cmd_in and cmd_out. 

 

 

 

Each of these channels will be connected to the appropriate conversion entity. We create a new file, 

axi_fmc110.vhd, that instantiates the StellarIP block we are reusing and one appropriate conversion 

entity for each of the interfaces. A block diagram of the final result is shown below. 

 

http://www.4dsp.com/


AN002 Tutorial: StellarIP Interface to AXI                      r1.0 

 

 

AN002                                                                 www.4dsp.com                                                                   page 11 of 28 

FMC110
Star

axi_fmc110.vhd
sip_fmc110.vhd

StellarIP Cmd
To

AXI-Lite

 wh_in0 

 axi_stream 

axi_stream 

Wormhole In
To

AXI-Stream

Wormhole In
To

AXI-Stream

Wormhole Out 
To

AXI-Stream

Wormhole Out 
To

AXI-Stream

cmd adc0

adc1dac0

dac1

 

Figure 4: Block Diagram of a StellarIP Block with AXI Interfaces 

 

The external signals are simply propagated through the wrapper. 
 
 
 
 
 
 
  

http://www.4dsp.com/


AN002 Tutorial: StellarIP Interface to AXI                      r1.0 

 

 

AN002                                                                 www.4dsp.com                                                                   page 12 of 28 

5 Simulate 
It is a good idea to run a simulation to gain confidence that the design works. 

 

5.1 File descriptions 

For the simulation to work we need the following files.  

./Src/ 

├── axi_fmc110.vhd 

├── conversion/* (See Section 3) 

├── data_gen/ 

│   ├── axi_stream_send.vhd 

│   └── rom.vhd 

├── simulation/ 

│   ├── axi_fmc110_tb.vhd 

│   ├── addr.coe 

│   ├── data.coe 

│   ├── fmc110_model/ 

|   │   ├── ads5400_init_mem.mif 

│   │   ├── ad9517_init_mem.mif 

│   │   ├── dac5681z_init_mem.mif 

│   │   ├── fmc110_cpld.vhd 

│   │   ├── fmc110_model.vhd 

│   │   └── i2c_slave_model.vhd 

│   ├── sip_cmd.sip 

│   └── XilinxCoreLib/ 

│       ├── BLK_MEM_GEN_V6_1.vhd 

│       ├── BLK_MEM_GEN_V6_2.vhd 

│       ├── fifo_generator_v8_1.vhd 

│       └── fifo_generator_v9_3.vhd 

└── sip_fmc110/* (See Section 2) 

 

 

Table 4: Simulation File Descriptions 

File or Folder Description 

axi_fmc110.vhd This is the top level entity of the converted IP. We took an IP 

Block from StellarIP and wrapped around conversion entities 

to have an AXI Interface. This is explained in Section 4 of this 

document. 

conversion/* This folder contains conversion entities provided as examples 

by 4DSP. These take typical StellarIP type of interfaces and 

http://www.4dsp.com/


AN002 Tutorial: StellarIP Interface to AXI                      r1.0 

 

 

AN002                                                                 www.4dsp.com                                                                   page 13 of 28 

 convert them to AXI Interfaces. This was explained in Section 

3 of this document. 

sip_fmc110/* 

 

This is the StellarIP Block source code we are reusing. This 

was explained in Section 2 of this document. 

simulation/axi_fmc110_tb.vhd 

 

This is the top level test bench, see the section below for 

creating this test bench. 

data_gen/* 

 

This entity was created for this application note to function as 

a simple AXI-Stream Master used to generate data that will 

go into the DAC interface of the FMC110. When enabled it 

sequentially reads a ROM and sends out the contents.  It 

produces a waveform that will be seen out of the DACs of the 

FMC110 daughter card. 

simulation/addr.coe 

simulation/data.coe 

 

These files are used by the Xilinx Traffic Generator to 

generate the write commands. StellarIP blocks work with 

commands to configure the burst length, read status 

information, enable capturing etc. Typically it is required to 

read the documentation for the StellarIP block you are using 

to figure what needs to be configured. Since an example is 

provided, sip_cmd.sip, we can simply take the commands 

from that file. 

simulation/sip_cmd.sip Many StellarIP blocks come with simulation files including a 

file called sip_cmd.sip which contain a list of commands used 

by a StellarIP host interface model.   

simulation/ XilinxCoreLib/* 

 

In Vivado 2014.1 the XilinxCoreLib library has been removed.  

This library contained simulation models for ISE IP cores such 

as FIFOs and Block Memories. Simulation models of Xilinx 

Vivado IP cores are delivered as an output product when the 

IP is generated but because many StellarIP blocks have been 

designed with ISE they depend on files from XilinxCoreLib for 

simulation to work. We must copy the simulation files that 

are being used from a previous version of ISE. A typical 

location is “C:\Xilinx\14.7\ISE_DS\ISE\vhdl\src\XilinxCoreLib”. 

simulation/ fmc110_model/* 

 

This is a simulation model for the FMC110 daughter card. It 

sends data through the external pins so we are able to 

simulate the capturing of the ADC data. 

 

  

http://www.4dsp.com/


AN002 Tutorial: StellarIP Interface to AXI                      r1.0 

 

 

AN002                                                                 www.4dsp.com                                                                   page 14 of 28 

5.2 Creating the project 

We will now step through creating the simulation project and running it. 

1. Select Create New Project 

 

2. Enter a project name and the location where to save it for Project Name. 

3. Select RTL Project for Project Type 

4. Click Next for Add Sources/ Add Constraints/ Add Existing IP 

5. Select VC707 under Boards for Device Type 

 
6. Select Finish 

At this point we have a Vivado project created and we now need to add all the design files. It is 

important to add files that are used for both synthesis and simulation by selecting Add or Create 

Design Sources. If the file is used only for simulation select Add or Create Simulation Sources. 

7. Add the files from the conversion folder by selecting Add or Create Design Sources. 

http://www.4dsp.com/


AN002 Tutorial: StellarIP Interface to AXI                      r1.0 

 

 

AN002                                                                 www.4dsp.com                                                                   page 15 of 28 

 
8. Add the files from the sip_fmc110 folder by selecting Add or Create Design Sources. 

9. Add the file from the fmc110_model folder by selecting Add or Create Simulation Sources. 

10. Add the files from the data_gen folder by selecting Add or Create Design Sources. 

11. Add the files from the XilinxCoreLib folder by selecting Add or Create Simulation Sources. 

Make sure to change the library to xilinxcorelib. 

 

Next we will add the AXI Traffic Generator IP from the Xilinx IP Catalog. This is used to send 

configuration commands to our IP Block. 

12. Open IP Catalog from Flow Navigator 

 
13. Select AXI Traffic Generator  

At this point we must configure the AXI Traffic Generator IP with the required settings. It is important 

we select “AXI4-Lite” as the protocol since this is the command interface we created for our IP. Mode 

http://www.4dsp.com/


AN002 Tutorial: StellarIP Interface to AXI                      r1.0 

 

 

AN002                                                                 www.4dsp.com                                                                   page 16 of 28 

needs to be “System Init”, this is the simplest mode where only sending commands is allowed. The 

“Transaction Depth” must be equal to the number of addresses and data in our COE files. The 

Address COE file and Data COE file were created by looking at sip_cmd.sip; it is important these two 

files are selected here in the COE File Paths section. 

14. Select the appropriate settings 

 
15. Select OK. This should synthesize the Traffic Generator IP. 

 
  

http://www.4dsp.com/


AN002 Tutorial: StellarIP Interface to AXI                      r1.0 

 

 

AN002                                                                 www.4dsp.com                                                                   page 17 of 28 

5.3 Creating the test bench 

We now create a new file, axi_fmc110_tb.vhd, by instantiating the blocks as shown below. An 

example on how to do this has been provided.  

AXI
FMC110

Controller

Xilinx
Traffic 

Generator

ROM
Data 

Generator

ROM
Data 

Generator

DAC1

DAC0

ADC1

ADC0

FMC110
Daughter

Card Model

CMD

 

Figure 5: Block diagram of simulation top-level 

 

5.4 Running Simulation 

Once the top-level test bench is ready we can Run Simulation. Vivado will process the design files 

and a waveform viewer will appear. 

 

5.4.1 Command Interface 

We first inspect that the appropriate commands are being sent from the Xilinx Traffic Generator 

Block through its AXI-Lite Interface. Add all the top level entity signals from the Xilinx Traffic 

Generator entity to the waveform viewer. 

 

Figure 6: Waveform view of the Traffic Generator 

http://www.4dsp.com/


AN002 Tutorial: StellarIP Interface to AXI                      r1.0 

 

 

AN002                                                                 www.4dsp.com                                                                   page 18 of 28 

 
We can also confirm that commands are arriving in fmc110_ctrl.vhd, for example the register 
NB_BURSTS_REG should get the value ‘1’. This demonstrates that conversion from AXI-Lite to 
StellarIP commands is working. 
 
Once the Traffic Generator sends all its commands we should see DONE=’1’ and STATUS[1:0] = “01” 
indicated success. 
 
 

5.4.2 ADC and DAC Interfaces 

For the ADC we should see ADC0_TDATA with data when ADC0_TVALID=’1’. This data is generated in 

the FMC110 Model and captured by the FMC110 Controller. 

 

For the DAC we should see data coming out on DAC0_TDATA when DAC0_VALID=’1’. We can trace 

this data going to a memory entity inside the FMC110 IP Block. Once a trigger is sent, through the 

Traffic Generator, data is read out of the memory and seen on the external pins. 

 

Figure 7: Waveform view of DAC0 and ADC0 

 
We have successfully simulated the design. We were able to send commands to the StellarIP Block, 
we were able to capture data from the ADCs and we were able to play a waveform in the DACs. 
  

http://www.4dsp.com/


AN002 Tutorial: StellarIP Interface to AXI                      r1.0 

 

 

AN002                                                                 www.4dsp.com                                                                   page 19 of 28 

6 Synthesize 
To have a synthesizable design we must make slight modifications to the simulation design. We 
switch the Xilinx Traffic Generator to Xilinx JTAG to AXI-Master. This gives us more control; it allows 
us to read as well as write and allows us to repeat a sequence of commands, for example, to capture 
ADC results multiple times. Also, we must capture the ADC data where we can view it; in simulation it 
is possible to add any signal to the waveform viewer. For synthesis we use the Xilinx Integrated Logic 
Analyser (ILA).  
 

6.1 File Descriptions 

The following files are used to synthesize the design and described below. 

Src/ 

├── axi_fmc110.vhd 

├── conversion/* (See Section 3) 

├── data_gen/ 

│   ├── axi_stream_send.vhd 

│   └── rom.vhd 

├── python/ 

│   ├── FMC110.vac 

│   ├── ila_raw.py 

│   ├── samples.txt 

│   └── waveform.csv 

├── sip_fmc110/* (See Section 2) 

├── synthesis/ 

│   ├── axi_fmc110_synth.vhd 

│   ├── axi_fmc110_synth.xdc 

│   ├── brd_clocks.vhd 

│   └── pll0.vhd 

└── tcl/ 

    ├── fmc110_capture.tcl 

    ├── fmc110_generate.tcl 

    └── fmc110_init.tcl 

 
 

Table 5: Synthesis file descriptions 

File or Folder Description 

synthesis/axi_fmc110_synth.vhd Top level entity 

synthesis/brd_clocks.vhd 

 

Clock generation entity. Accepts a differential external clock 

and generate a 200 MHz and a 125 MHz clock using a PLL 

(pll0.vhd) 

synthesis/axi_fmc110_synth.xdc Constraint file for VC707 + FMC110. 

http://www.4dsp.com/


AN002 Tutorial: StellarIP Interface to AXI                      r1.0 

 

 

AN002                                                                 www.4dsp.com                                                                   page 20 of 28 

 

Note: When creating a constraint file it is important to know 

that everything is case sensitive, unlike VHDL. The signal 

names must match the case of the top level signal names. 

The Vivado commands need to be lower case, i.e., it is 

important to have set_property and not SET_PROPERTY. 

 

python/ila_raw.py A script written in the Python programming language used to 

read a CSV file, extract the data of interest, and convert the 

data to the format required for processing. This is used on 

python/waveform.csv which was generated with the Vivado 

command write_hw_ila_data. The output of the Python 

script is python/samples.txt which can be plotted and 

analysed with VisualAnalog using the template python/ 

FMC110.vac. 

python/FMC110.vac Design file for Analog Device’s VisualAnalog Software, used to 

visualize and process data samples. 

tcl/ fmc110_init.tcl 

 

Vivado TCL script to send commands through the Xilinx JTAG 

to AXI Master IP. Used to initialize the FMC110 Card. More 

information in the Running Design section. 

c/sipif.cpp Modified read and write functions in the reference 

application for VC707+FMC110. Used to log what is being 

written and read. 

 
 

6.2 Modifying the project for synthesis 

1. In Flow Navigator select IP Catalog 
2. Select JTAG to AXI Master 

 

 
 

3. Configure the IP Block with the following settings 

http://www.4dsp.com/


AN002 Tutorial: StellarIP Interface to AXI                      r1.0 

 

 

AN002                                                                 www.4dsp.com                                                                   page 21 of 28 

 
 

4. Select OK. JTAG to AXI Master IP should now synthesize. 
In simulation the ADC output could be added to the waveform viewer without being connected to 
anything. For synthesis, to view the ADC output, we use the Xilinx Integrated Logic Analyzer (ILA) IP 
Block. 

5. In Flow Navigator select IP Catalog 
6. Select ILA (Integrated Logic Analyzer). 
7. Configure the IP Block using: Interface = Native, Number of Probes = 1, Probe Width = 132. 

 
8. Select OK. ILA should now synthesize. 

In simulation a reset is created by using the VHDL after keyword that won’t synthesize. For synthesis 
we use the Xilinx VIO (Virtual Input/Output) IP Block. 

http://www.4dsp.com/


AN002 Tutorial: StellarIP Interface to AXI                      r1.0 

 

 

AN002                                                                 www.4dsp.com                                                                   page 22 of 28 

9. In Flow Navigator select IP Catalog. 
10. Select VIO (Virtual Input/Output). 
11. Configure the IP Block using, Input Probe Count = 1, Output Probe Count = 1,  

 
12. Select OK. VIO should now synthesize. 

 

6.3 Creating the top level 

The final block diagram should look as following: 

AXI
FMC110

Controller

Xilinx JTAG
To

AXI Master

DAC
Pattern

Generator

DAC
Pattern

Generator

DAC1

DAC0

ADC1

ADC0
Xilinx

ILA

Xilinx ILA

external signals

 
 
Finally we can select Run Implementation. 
 

 

  

http://www.4dsp.com/


AN002 Tutorial: StellarIP Interface to AXI                      r1.0 

 

 

AN002                                                                 www.4dsp.com                                                                   page 23 of 28 

6.4 Running and Initialization 

Once we have successfully generated a bit file we open Hardware Manager and select Program 

Device to program the bit file to the FPGA. 

 

 

6.4.1 Initialization Script  

With the FPGA programmed and with the Hardware Manager opened we must execute the 

initialization script, fmc110_init.tcl, in the Vivado TCL console to configure the FMC110 daughter 

card.  

source fmc_init.tcl 

The command sequence is a lot longer than it was for simulation; we are running on hardware and 

we must correctly configure all devices. Generally this requires a careful reading of the datasheet for 

each device (ADCs/DACs/Clock Synthesizers/etc...) and figuring out what registers, if any, need to be 

configured. 4DSP has done this and provides a reference design that performs the complete 

configuration in software. 

 

By modifying the write and read wrapper functions used in the 4DSP reference design application for 

VC707+FMC110 (see sipif.cpp) we can obtain a complete list of all commands sent. 

 

Read and writes logged from the 

VC707+FMC110 reference application 

by modifying sipif.cpp. 

The same read and writes done through 

Xilinx JTAG to Master through the 

fmc110_init.tcl script 

[RD] 00002408   00000003  

[RD] 00002d24   00000000  

[WR] 00002d24   00000020  

[WR] 00002d24   00000000  

[RD] 00002d24   00000000  

[WR] 00002d24   00000040  

[WR] 00002d24   00000000  

[WR] 00002d24   0000001e  

[WR] 00002d25   00000000  

[WR] 00002d26   00000000  

[RD] 00002d24   0000001e  

[RD] 00002707   00000053  

[WR] 00002714   0000007c 

…  

axi_lite_read  2408   ;#00000003  

axi_lite_read  2d24   ;#00000000  

axi_lite_write 2d24   00000020  

axi_lite_write 2d24   00000000  

axi_lite_read  2d24   ;#00000000  

axi_lite_write 2d24   00000040  

axi_lite_write 2d24   00000000  

axi_lite_write 2d24   0000001e  

axi_lite_write 2d25   00000000  

axi_lite_write 2d26   00000000  

axi_lite_read  2d24   ;#0000001e  

axi_lite_read  2707   ;#00000053  

axi_lite_write 2714   0000007c  

… 

 

http://www.4dsp.com/


AN002 Tutorial: StellarIP Interface to AXI                      r1.0 

 

 

AN002                                                                 www.4dsp.com                                                                   page 24 of 28 

Once we run the initialization script we have access to the two commands axi_lite_write and 

axi_lite_read, see the file fmc_init.tcl or Xilinx UG908 Programming and Debugging for 

implementation details.   

 

6.5 Capturing ADC Data 

Once the synthesized design is loaded and the FMC110 has been initialized we are ready to capture 

data. For this test a 30 MHz sine wave from a function generator is being fed to ADC0.   

 

Figure 8: FMC110 Data Capture 

 

We now configure the ILA for capturing. The important signals to capture are ADC0_TDATA, and 

ADC0_TVALID, trigger the ILA on adc0_valid = ‘1’ to see the ADC samples. 

 

Figure 9: Trigger Configuration 

 

Issue the ADC capture command sequence through the Vivado TCL console. 

axi_lite_write 2405   0000050d ;# Enable ADC0 & DAC0&DAC1 
axi_lite_write 2404   00000001 ;# ARM 
axi_lite_write 2404   00000004 ;# Trigger 

http://www.4dsp.com/


AN002 Tutorial: StellarIP Interface to AXI                      r1.0 

 

 

AN002                                                                 www.4dsp.com                                                                   page 25 of 28 

An ILA trigger occurs when ADC0_TVALID=’1’ and data appears on the waveform viewer. We can see 

data arriving on ADC0_TDATA. Virtual buses were created to see individual samples and we get the 

following waveform: 

 

 

 

The signal doesn’t look like a sine wave because the ADC outputs data in two’s complement form. 

Also, it would be best to see the samples sequentially, not four in parallel, unfortunately there is 

nothing in the Vivado waveform viewer to accommodate this. We can, however, download the 

samples by issuing the following command in Vivado: 

write_hw_ila_data ila_data_file.zip [upload_hw_ila_data hw_ila_1] 

This saves the waveform into an archive with a CSV file which has the raw captured data. Using the 

provided python script (ila_raw.py) we can convert from binary strings to integers, which can be 

read by Analog Device’s VisualAnalog Application. 

 

http://www.4dsp.com/


AN002 Tutorial: StellarIP Interface to AXI                      r1.0 

 

 

AN002                                                                 www.4dsp.com                                                                   page 26 of 28 

  

Figure 10: VisualAnalog display of the captured data. 

From the graph and FFT we see the captured data correctly represents a 30MHz signal. 

 

6.6 DAC Results 

The DAC is enabled when the following command sequence is executed: 

axi_lite_write 2406   00000001 ;# Number of bursts 
axi_lite_write 2407   00000100 ;# Burst size 
axi_lite_write 2405   00000004 ;# Enable DAC0 
axi_lite_write 2404   00000008 ;# Load WFM (Firmware will monitor for this command) 
axi_lite_write 2404   00000004 ;# Trigger 

There is a process in axi_fmc110_synth.vhd (and axi_fmc110_tb.vhd when simulating) that monitors 

for a DAC load waveform command and enables the data generator (axi_stream_send.vhd) any time 

it is seen. The generated data come into the FMC110 Controller through one of the AXI Slave 

interfaces that was created in Section 4 for the DAC. The data gets stored inside a BRAM where it will 

continuously be sent to the DAC when a trigger command is asserted. 

 

 

Figure 11: DAC Data Generation Enable 

 

The following 16 samples make up the sine wave that is generated.  

0000,30fb,5a81,7640,7fff,7640,5a81,30fb,0000,CF05,A57F,89C0,8001,89C0,A57F,CF05 

The DAC is operating at 1.0 GSPS which means that the DAC consumes a sample every 1 ns so the 

pattern is repeating every 16 ns. 16 ns translates to 62.5 MHz, so we would expect to see a 62.5 MHz 

signal on an oscilloscope. 

 

http://www.4dsp.com/


AN002 Tutorial: StellarIP Interface to AXI                      r1.0 

 

 

AN002                                                                 www.4dsp.com                                                                   page 27 of 28 

 

Figure 12: Oscilloscope view of DAC0 

Connecting DAC0 from the FMC110+VC707 to an oscilloscope shows a waveform of 62.85 MHz, this 

confirms that the AXI FMC110 Controller is working. 

  

http://www.4dsp.com/


AN002 Tutorial: StellarIP Interface to AXI                      r1.0 

 

 

AN002                                                                 www.4dsp.com                                                                   page 28 of 28 

7 References  
 Vivado Design Suite User Guide Programming and Debugging  

 4FM Programmer’s guide 

 FMC110 User Manual 

 FMC110 Star Documentation 

 Xilinx AXI Traffic Generator IP Documentation 

 Xilinx JTAG to Master IP Documentation 

 Xilinx AXI GPIO IP Documentation 

http://www.4dsp.com/

