ANO0O02 Tutorial: StellarlIP Interface to AXI "!'DSP r1.0

Tutorial
StellarIP Interface
To
AXI Interface

4DSP LLC

Email: support@4dsp.com

This document is the property of 4DSP LLC and may not be copied nor communicated to a third party
without the written permission of 4DSP LLC.

© 4DSP LLC 2014

AN002 www.4dsp.com page 1 of 28

http://www.4dsp.com/
mailto:support@4dsp.com

ANO0O02 Tutorial: StellarlIP Interface to AXI

=

rl.0

Revision History

Date

Revision

Revision

2014-07-18

Initial release

1.0

ANO002

www.4dsp.com

page 2 of 28

http://www.4dsp.com/

ANO0O02 Tutorial: StellarlIP Interface to AXI "!'DSP

Table of Contents

1 INErOUCHION....ceee s 4
1.1 OVEBIVIBW. ...ttt ettt et e e st e e st e e s b et e e s mbe e e e s ambe e e e s amre e e e e e reeeeeanneneeeanraneeennrenes 4
1.2 REQUITBIMENTS ...ttt e e e e e e st e e e e e e e s s s aabteeeeeeessasasseeeeeeesesannsnnes 4
1.3 Terms and definitions........oooiiiiee e 4

2 ODbtaining 4DSP IP SOUICe COdE.......cceeruuerrirnnerrennnereennssereennssereennsseseensssssesnsssssesnnssssesnnssssenns 5
2.1 Locate the VHDL SOUMCE COUE......couiiiiiiiirieeniteete ettt sttt sttt e b e saeesaee e 5
2.2 Copythe required IP SOUICE filES. ..ooiiiiiiieieiiiee ettt et e e e e arr e e e e aeaee e eanes 5

3 ConVversion ENtities.....ccciiieieeeuiiiiiiiiiiiiiiniii e e s s s s e s e e e ees 7
3.1 Wormhole Output to AXI-STream MasStercciiiciieeiiciieeccieee et e e e s e e s eseeeeeenes 7
3.2 Wormhole Input to AXI-STtream SIQVEccviei i 8
3.3 StellarlP Command tO AXI-LItEcocueerieeeeiieite ettt sttt 8

4 Wrapping iNto AXl . .ccuiiieeiiiiiiieeiiiteiiiiniireeiiieeiiieeereasisrnssstssssranssssassssnssssnsssssessssnssssnssssnsssans 10

5 SIMUIALE e 12
5.1 1 El o [T ol T 4[] o - PP 12
o3 A O ¢ -1 = 4 d Tl o o] =T ot PSP 14
5.3 Creating the teSt DENCH ..o e 17
5.4 RUNNING SIMUIGTION 1ottt e et e e ettt e e e e eaba e e e earaeeeentaeeesansaneanan 17

54.1 CoMMAN INEEITACEceeieeie ettt as 17
5.4.2 ADC and DAC INEEIACES ..ottt sttt e s 18

(I3 V7114 1L TSN 19

6.1 File DESCIIPLIONS c.neviieeeeiieee ettt e e e et e e e s e e e e s bt e e e esaabeeeesasbeeeeennseeesannsenas 19
FIlE OF FOIARN ..ttt ettt sbe e s s et eeneesneesreesane e 19

6.2 Modifying the project for SYNthesisc.ueiiiciiii i 20
6.3 Creating the tOP IEVEN ... e e e e e s e e e e e e e nnneeeeee s 22
6.4 RUnNNing and INitialization ... e e e e 23
6.4.1 INIEIAlIZAtION SCIIPL ... e e e e e e e e e e e e e e e e e ennnenes 23

6.5 Capturing ADC Data...ccccviiiiiiiiiiiiiiiiiiieieieeseeeeeeeseseeseeseseseseesessesesseseees 24
6.6 DAC RESUIELS ...eeiiiiieiieeeeeet ettt sttt et ettt st sttt e b e re e e sne e e e e s 26

A (=1 =1 =1 ol 28

AN002 www.4dsp.com page 3 of 28

http://www.4dsp.com/

ANO0O02 Tutorial: StellarlIP Interface to AXI "!'DSP r1.0

1 Introduction

StellarlP is a block-based IP integration solution similar to Xilinx Vivado IP Integrator. One important
difference is that StellarIP blocks generally do not use AXI Interfaces. Since the StellarlP Catalog has
fully functional IP for all 4DSP Hardware including host interfaces, memory controllers, and FMC
Board Controllers, there might be a desire to reuse this code within a system using AXI Interfaces.
This document is meant to be a guided description on how to convert a typical StellarIP block to have
an AXl Interface.

To make this guide concrete the FMC110 IP Block (sip_fmc110) will be used, but the techniques can
be applied to any StellarIP Block. The FMC110 IP Block is an Interface Controller for a 4DSP FMC110
daughter card which is a dual channel 12-bit ADC and a dual channel 16-bit DAC. The FMC110
controller is able to configure the clock tree, ADCs and DACs as well as capture data from the ADC
and send data to the DAC.

1.1 Overview

To convert the FMC110 IP Block to AXI we first obtain the source code and create an AXI wrapper
around it. At this point the interface conversion is complete but we continue with a simulation to
gain confidence and finally build a design targeting a Xilinx VC707 development board to prove
functionality.

1.2 Requirements
The following tools are required to completely follow this tutorial:

- 4DSP FMC110 Daughter Card

- Xilinx VC707 Carrier Board

- 4DSP Board Support Package

- Xilinx Vivado 2014.1 or later

- Python Programming Language Interpreter

- Analog Devices VisualAnalog
Please refer to the Xilinx user guides, 4FM Getting Started Guide, and other 4DSP documents to
make sure all of these are properly installed.

1.3 Terms and definitions

Throughout the document the following terms are used with the indicated definitions

Entity A VHDL keyword to define an interface. More abstractly it can represent a
functional block or an actual file with VHDL code.

StellarlP Block or Star All source code that makes up a StellarIP Block. A top level entity and all
sub-entities.

Interface or Channel A collection of signals.

AN002 www.4dsp.com page 4 of 28

http://www.4dsp.com/

ANO002 Tutorial: StellarlP Interface to AXI =1 &S

2 Obtaining 4DSP IP Source Code

All 4DSP Hardware comes with a Board Support Package that includes an FPGA reference design that
that exercises the functionality of the hardware. Since in this tutorial we want to take the FMC110
StellarIP Block and convert it to have an AXI-Interface we first need to obtain all the source code we
are going to reuse.

2.1 Locate the VHDL source code.
It is typically located in the star lib folder “/star_lib/sip_fmc110”.

2.2 Copy the required IP source files.

The FMC110 IP is designed to work with many different carrier boards having different FPGAs so
there might be different version of files that are used with different FPGAs. To know which files are
needed a list is provided depending on what FPGA is being used.

Table 1: Source List

File Ending Description

_v7.Ist Design files used with a Virtex-7 FPGA
_k7.Ist Design files used with a Kintex-7 FPGA
_vb.Ist Design files used with a Virtex-6 FPGA

Since we are targeting a VC707 Carrier Board which has a Virtex-7 FPGA we look in the *_v7.Ist file
and copy each of the listed files in “/star_lib/sip_fmc110/sip_files/sip_fmc110_v7.Ist” to a local
directory called “Src”.

Src/

L sip fmcll0
I— ad9517 init mem.ngc
I— ad9517 init mem.vhd
F— ads5400 fifo.vhd
I— ads5400 init mem.ngc

F— ads5400 init mem.vhd
F— ads5400 phy fifo.ngc
F— ads5400 phy fifo.vhd
F—— ads5400 phy sp v7.vhd
F—— ads5400 storage fifo.ngc
F— ads5400 storage fifo.vhd

AN002 www.4dsp.com page 5 of 28

http://www.4dsp.com/

ANOO2 Tutorial: StellarIP Interface to AXI

“DSP

rl.0

F__
F__
F__
F__
F__
F__
F__
F__
F__
F__
F__
F__
F__
F__
F__
F__
F__
F__
F__
F__
F__
F__
F__
F__
F__
F__
F__
L

bit align machine.vhd
dac5681lz init mem.ngc
dac568lz init mem.vhd
dac5681lz phy fifo.ngc
dac5681z phy fifo.vhd
dac5681z phy v7.vhd
dac568lz wfm ctrl.vhd
dac5681lz wfm dpram.ngc
dac568lz wfm dpram.vhd
dac568lz wfm input fifo.ngc
dac568lz wfm input fifo.vhd
dac568lz wfm output fifo.ngc
dac5681lz wfm output fifo.vhd
dac568lz wfm.vhd
dac_mmcm.vhd

dac_mmcm.xco

fmcll0 ad9517 ctrl.vhd
fmcll0 ads5400 ctrl.vhd
fmcll0 cpld ctrl.vhd

fmcll0 ctrl.vhd

fmcl1l0 dac5681z ctrl.vhd
fmcll0 if v7.vhd

fmcll0 stellar cmd.vhd

pack 1lé6tol2.vhd
pulse2pulse.vhd
serdes_v'7.vhd

sip fmcll0.vhd

sip freq cntl6.vhd

ANO002

www.4dsp.com

page 6 of 28

http://www.4dsp.com/

ANO002 Tutorial: StellarlP Interface to AXI =1 &S

3 Conversion entities

In the majority of cases StellarlP Blocks have just three types of interfaces: Data Wormhole Inputs
(wh_in), Data Wormhole Outputs (wh_out) and StellarlP Commands (cmd_in and cmd_out). They will
be converted into AX14-Stream Slave, AXI4-Stream Master, and AXI4-Lite Slave interfaces
respectively. Example entities to perform the interface conversion have been provided.

Src/

L— conversion
— axistream to whin.vhd
F— delay bit.vhd

— stellarcmd to axilite.vhd
— axis2wh fifo.ngc
— axis2wh_ fifo.vhd

L— whout to axistream.vhd

Table 2: Conversion Entities

Conversion Entity From Interface To Interface Used For

stellarcmd_to_axilite.vhd | StellarlP Command | AXl4-Lite Slave FMC1110 Commands
axistream_to_whin.vhd Wormbhole Input AXl4-Stream Slave FMC110 DACO/DAC1
whout_to_axistream.vhd | Wormhole Output AXI4-Stream Master | FMC110 ADCO/ADC1

3.1 Wormbhole Output to AXI-Stream Master

A StellarlP output channel is typically made up of three signals: DATA, VALID and STOP. This works as
expected: DATA contains the output data, VALID is HIGH when DATA holds valid data and STOP
indicates that the receiver can no longer accept data and we should stop sending.

The conversion between a StellarlP output channel and an AXI-Stream Master is straight forward
connection because the channels are mostly compatible. The only difficulty is that when a STOP is
asserted in a StellarIP Interface data will not immediately stop flowing, it might take up-to 8 cycles,
unlike with TREADY. To accommodate this we use a FWFT FIFO.

—TDATA[31:0]) —DATA[63:0]—)
Wormhole Out
——TVALID—)| To ——VALID—)
AXI-Stream Master
€—TREADY— &—sToF

Figure 1: whout_to_axistream.vhd

AN002 www.4dsp.com page 7 of 28

http://www.4dsp.com/

ANO0O02 Tutorial: StellarlIP Interface to AXI "!'DSP r1.0

All the signals in an AXI-Stream channel, except for ACLK, ARESETn and TVALID are optional. The
other signals are set to their default values, see the AXI-Stream Standard for details.

3.2 Wormbhole Input to AXI-Stream Slave

A StellarIP input channel is typically made up of three signals: DATA, VALID and STOP. This works as
expected: the signal DATA contains the input data, the signal VALID is HIGH when the signal DATA
holds valid data and the signal STOP provides back pressure when valid data can no longer be
accepted.

The conversion between a StellarlP input channel and an AXI-Stream Slave is straight forward
because the interfaces are compatible. In the AXI-Stream standard all signals expect for ACLK,
ARESETn and TVALID are optional giving a straight forward conversion.

—DATA[63:0]— —TDATA[31:0])
Wormhole In
——VALD—)| To ——TVALID—>
AXI-Stream Slave
—sToP (€—TREADY—

Figure 2: axistream_to_whin.vhd

3.3 StellarIP Command to AXI-Lite

A StellarlP command interface is generally made of two signals: CMD and CMD_VALID. The command
signal is 64-bits wide.

Table 3: StellarIP Command Format

Range 63...60 59..32 31..0
Field CMD Address Data
Description | The command defines Contains the address | Contains the data we are going to

what is in the other which we are trying write when sent with CMD_WR.
fields, it can be one of to write to or read to. | Ignored when sent with CMD_RD.
the following: Contains the read data when
CMD_WR =0b0001 received with CMD_RD_ACK.
CMD_RD =0b0010
CMD_RD_ACK = 0b0100

The interface is not bidirectional and require two pairs for writing and reading; CMD_IN,
CMD_IN_VALID, CMD_OUT and CMD_OUT_VALID. The command interface can be thought as a
distributed RAM with an address range which we read and write from. The conversion entity which
has been provided, stellarcmd_to_axilite.vhd, is loosely based on the Xilinx AXI GPIO IP.

AN002 www.4dsp.com page 8 of 28

http://www.4dsp.com/

ANO0O02 Tutorial: StellarlIP Interface to AXI

=

rl.0

The conversion is done by accepting a CMD_IN StellarlP command and issuing an AXI-Lite command

&—CMD_ouT—

€CMD_OUT_VAL=

——CMD_IN—)|

—CMD_IN_VAL=)|

QAW A0 e
AW Vi e

——awready—>

WAt g—

W DSt I e

WV [e

——wready—>
StellarlP CMD
To —bresH

——>balid=—
AXI-Lite Slave bre ady——

arad dp=—
arvali g=—

—arreadH
—rdatH

e 2 §

—rvaliH
hrready—

Figure 3: stellarcmd_to_axilite.vhd

Write Address
Channel

Write Data
Channel

Write Response
Channel

Read Address
Channel

Read Data
Channel

and also by accepting an AXI-Lite command and issuing a CMD_OUT StellarlP command. The

conversion can be best understood by becoming familiar with the AXI-Lite Standard. As an example,

image a write of OXAAAAAAAA to address 0x7. The address would come from the Write Address

Channel and the data would come from the Write Data Channel. These would be combined to form
the following StellarlP command:

| Ox1 | 0x0000007 | OXAAAAAAAA |

The command would be sent out CMD_OUT and a reply would be sent through the Write Response

Channel.

ANO002

www.4dsp.com

page 9 of 28

http://www.4dsp.com/

“DSP

ANOO2 Tutorial: StellarIP Interface to AXI

rl.0

4 Wrapping into AXI

At this point we have the source code for the StellarIP Block we are going to reuse and the
conversion entities that help speed up the process. Looking at top level entity, sip_fmc110.vhd, for
the FMC110 IP we can see that we have two wh_in interfaces for each of the DACs, two wh_out
interfaces for each of the ADCs, and the command interface; cmd_in and cmd_out.

entity sip_fmc118 is

generic (
GLOBAL_START_ADDR_GEM
GLOBAL_STOP_ADDR_GEN
PRIVATE_START_ADDR_GEH
PRIUATE_STOP_ADDR_GEN

IH

port

-—Wormhole ‘clk' of type
clk_clkin

--Wormhole ‘rst' of type
rst_rstin

--Wormhole ‘cmdclk_in® of type ‘cmdclk_in':

cmdclk_in_cmdclk

--Wormhole 'cmd_in' of type 'cmd_in':

cmd_in_cmdin
cmd_in_cmdin_val

--Wormhole ‘cmd_out' of type

cmd_out_cmdout
cmd_out_cmdout_wval

--Wormhole ‘adcB' of type
adcB_out_stop
adcB_out_dwal
adcB_out_data

-—Wormhole ‘adci1' of type
adc1_out_stop
adc1_out_dwal
adc1_out_data

--Wormhole ‘dac@' of type
dac@_in_stop
dac®_in_dval
dac@®_in_data

-—Wormhole ‘daci1' of type
dac1_in_stop
dac1_in_dval
dac1_in_data

--Wormhole ‘ext_fmc118° of type ‘ext_fmci118°:

fmc_to_cpld
front_io_fmc

‘clkin':

'rst_in':

‘wh_out':

‘wh_out*:

‘wh_in"':

‘cmd_out':

: std_logic_vector{27 downto
: std_logic_wector {27 downto
: std_logic_vector{27 downto
: std_logic_wector {27 downto

std_logic_vector{31

std_logic_wector{31

std_logic;

std_logic_wvector{63
std_logic;

std_logic_wvector{63
std_logic;

std_logic;
std_logic;
std_logic_wvector{63

std_logic;
std_logic;
std_logic_wvector{63

std_logic;
std_logic;
std_logic_wvector{63

std_logic;
std_logic;
std_logic_wvector{63

downto

downto

downto

downto

downto

downto

downto

downto

8);

: inout std_logic_vector(3 downto 8);
: inout std_logic_vector(3 downto 8);

Each of these channels will be connected to the appropriate conversion entity. We create a new file,
axi_fmc110.vhd, that instantiates the StellarIP block we are reusing and one appropriate conversion
entity for each of the interfaces. A block diagram of the final result is shown below.

AN002 www.4dsp.com page 10 of 28

http://www.4dsp.com/

ANO0O02 Tutorial: StellarlIP Interface to AXI "!'DSP r1.0

StellarlP Cmd Wormhole Out X
(— axi_lite To (—stellar_cmd—) cmd ad 0 [wh_inO% To — am_stream%l
AXI-Lite AXI|-Stream
FMC110
Wormhole In Star Wormhole Out .
—axi_stream=) To —— wh_in0—| dac0 adc1|=—— wh_in0—> To axi_stream=—)
AXI|-Stream AXI-Stream

Wormhole In

—axi_stream9 To wh_in 1% dacl external signalsé'

AXI-Stream

sip_fmc110.vhd

axi_fmc110.vhd

Figure 4: Block Diagram of a StellarIP Block with AXI Interfaces

The external signals are simply propagated through the wrapper.

AN002 www.4dsp.com page 11 of 28

http://www.4dsp.com/

ANO002 Tutorial: StellarlP Interface to AXI =1 &S

5 Simulate

It is a good idea to run a simulation to gain confidence that the design works.

5.1 File descriptions
For the simulation to work we need the following files.

./Src/

F— axi fmcl110.vhd

|— conversion/* (See Section 3)
F— data gen/

| I— axl stream send.vhd

| L— rom.vhd

F— simulation/

F— axi fmcl10 tb.vhd

|— addr.coe
F— data.coe

F— fmcl110 model/
| F— ads5400 init mem.mif
| |— ad9517 init mem.mif
| F— dac5681z init mem.mif
| F— fmcl10 cpld.vhd
| b— fmcl10 model.vhd
| L— i2c slave model.vhd
— sip_
L XilinxCoreLib/
F— BLK MEM GEN V6 _1.vhd
— BLK MEM GEN V6 2.vhd
|— fifo generator v8 1.vhd
L— fifo generator v9 3.vhd

cmd.sip

L sip fmcll0/* (See Section 2)

Table 4: Simulation File Descriptions

File or Folder Description

axi_fmc110.vhd This is the top level entity of the converted IP. We took an IP
Block from StellarlP and wrapped around conversion entities
to have an AXI Interface. This is explained in Section 4 of this
document.

conversion/* This folder contains conversion entities provided as examples

by 4DSP. These take typical StellarIP type of interfaces and

AN002 www.4dsp.com page 12 of 28

http://www.4dsp.com/

ANO0O02 Tutorial: StellarlIP Interface to AXI "!'DSP

rl.0

convert them to AXI Interfaces. This was explained in Section
3 of this document.

sip_fmc110/*

This is the StellarIP Block source code we are reusing. This
was explained in Section 2 of this document.

simulation/axi_fmc110_tb.vhd

This is the top level test bench, see the section below for
creating this test bench.

data_gen/*

This entity was created for this application note to function as
a simple AXI-Stream Master used to generate data that will
go into the DAC interface of the FMC110. When enabled it
sequentially reads a ROM and sends out the contents. It
produces a waveform that will be seen out of the DACs of the
FMC110 daughter card.

simulation/addr.coe

simulation/data.coe

These files are used by the Xilinx Traffic Generator to
generate the write commands. StellarIP blocks work with
commands to configure the burst length, read status
information, enable capturing etc. Typically it is required to
read the documentation for the StellarIP block you are using
to figure what needs to be configured. Since an example is
provided, sip_cmd.sip, we can simply take the commands
from that file.

simulation/sip_cmd.sip

Many StellarIP blocks come with simulation files including a
file called sip_cmd.sip which contain a list of commands used
by a StellarIP host interface model.

simulation/ XilinxCoreLib/*

In Vivado 2014.1 the XilinxCorelLib library has been removed.
This library contained simulation models for ISE IP cores such
as FIFOs and Block Memories. Simulation models of Xilinx
Vivado IP cores are delivered as an output product when the
IP is generated but because many StellarIP blocks have been
designed with ISE they depend on files from XilinxCoreLib for
simulation to work. We must copy the simulation files that
are being used from a previous version of ISE. A typical
location is “C:\Xilinx\14.7\ISE_DS\ISE\vhdI\src\XilinxCoreLib”.

simulation/ fmc110_model/*

This is a simulation model for the FMC110 daughter card. It
sends data through the external pins so we are able to
simulate the capturing of the ADC data.

ANO002

www.4dsp.com page 13 of 28

http://www.4dsp.com/

ANO0O02 Tutorial: StellarlIP Interface to AXI "!'DSP

rl.0

5.2 Creating the project
We will now step through creating the simulation project and running it.
1. Select Create New Project

P!

Fle Fow Tools Window Help

VIVADO! 1 s

Quick Start
/..‘i ‘ I@
Create New Project Open Project Open Example Project
Tasks
{ | B
3
Manage IP Open Hardware Manager ilinx Td Store.

Information Center

A NS REmeer
2. Enter a project name and the location where to save it for Project Name.
3. Select RTL Project for Project Type

4. Click Next for Add Sources/ Add Constraints/ Add Existing IP

5. Select VC707 under Boards for Device Type

New Project
Default Part
Choose a default Xilink part or board for your project. This can be changed later, ’

Specify Filter

& Parts “endor [xilink.com =
Display Name |All Remaining -
Board Rew |Latest -

| Reset All Filters

Search: | |
Display Name ‘ Wendor | Board Rev| Part |I;’0 Pin Count|FiIe Y
@ Artiv-7 AC701 Evaluation Flatform Hilinyx, corn 1.0 @ xc7a200tfhg676-2 676 1.0
H Kintex-7 KC705 Evaluation Flatform wilini.com 1.1 @ nocTk325tgs00-2 800 1.0
it |@ virtex-7 VC707 Evalustion Platfarm wilir corn 11 9 HeFud B5tffgl 761-2 1,761 1.0
@ virtex-7 V709 Evaluation Flatfarm Hilinx corn 1.0 @ Me 7V 90tffgl 761-2 1,761 1.0
@ zvNQ-7 ZC702 Evaluation Board wilini. com 1.0 @ nc72020clg484-1 484 1.0
B ZvNQ-7 ZC706 Evaluation Board ilink com 1.1 & 1c7z045ffgo00-2 Qo0 1.0
<] »
= Back H Mexnt = “ FEinish | || Cancel \l

6. Select Finish

At this point we have a Vivado project created and we now need to add all the design files. It is
important to add files that are used for both synthesis and simulation by selecting Add or Create
Design Sources. If the file is used only for simulation select Add or Create Simulation Sources.

7. Add the files from the conversion folder by selecting Add or Create Design Sources.

AN002 www.4dsp.com page 14 of 28

http://www.4dsp.com/

ANO0O02 Tutorial: StellarlIP Interface to AXI

=

rl.0

Add Sources

This guides you through the process of adding and creating sources for your project

O Add or Create Constraints

® Add or Create Design Sources

O Add or Create Simulation Sources
O Add or Create DSP Sources

O Add Existing Block Design Sources

O Add Existing IP

8. Add the files from the sip_fmc110 folder by selecting Add or Create Design Sources.

9. Add the file from the fmc110_model folder by selecting Add or Create Simulation Sources.
10. Add the files from the data_gen folder by selecting Add or Create Design Sources.

11. Add the files from the XilinxCorelLib folder by selecting Add or Create Simulation Sources.

Make sure to change the library to xilinxcorelib.

Add Sources
Add or Create Simulation Sources

Specify simulation specific HDL files, or directories containing HOL files, to add to your project. Create a new source file
on disk and add it to your project.

g

Specify simulation set: ‘:. sim_1 - |
Spcy o o
[index] Name [Library [Location]
el 1 BLK_MEM_GEN_%6_l.vhd xilinxcorelib (=] home/luisy...
@l 2 BLK_MEM_GEN_%6_2.vhd silinxcorelib (=] shome/luis;. ..
(e} adg517_init_mem.mif N/A Jhome/luist... -
& 4 ads5400_init_mam.mif Ni& /horne/luisy... E3
& 5 dac5681z_init_mem.mif N/A Jhome/luisy.. —
i 6 fifo_generator v8_1.vhd silinxcorelib (=] thorne/luiss... 2]
i 7 fifo_generator_v8_3.vhd xilinxcorelib (=) thome/luisd... ‘:‘
+
Add Files... I | Add Directories... I | Create File...
[0 Scan and add RTL Include files into project
[copy sources into project
[£dd sources from subdirectories
¥ Include all design sources for simulation
‘ = Back “ [ext = || Einish I | cancel I

Next we will add the AXI Traffic Generator IP from the Xilinx IP Catalog. This is used to send
configuration commands to our IP Block.

12. Open IP Catalog from Flow Navigator

Eile Edit Flow Tools Window Layout
Aol X | dD>UH
Flow Mavigator «“ Pro
Q, E {% Saur

o =

e

4 Project Manager

% Froject Settings £

&% add Sources
1F IP Ccatalog

13. Select AXI Traffic Generator

At this point we must configure the AXI Traffic Generator IP with the required settings. It is important
we select “AXIl4-Lite” as the protocol since this is the command interface we created for our IP. Mode

ANO002

www.4dsp.com

page 15 of 28

http://www.4dsp.com/

ANO0O02 Tutorial: StellarlIP Interface to AXI "!'DSP r1.0

needs to be “System Init”, this is the simplest mode where only sending commands is allowed. The
“Transaction Depth” must be equal to the number of addresses and data in our COE files. The
Address COE file and Data COE file were created by looking at sip_cmd.sip; it is important these two
files are selected here in the COE File Paths section.

14. Select the appropriate settings

Customize IP
AXI Traffic Generator (2.0) '

ﬁ Documentation [IP Location £J Switch to Defaults

¥ Show disabled ports Component Name ‘axl_trafﬂc_gen_t) |

Profile Selection

@® custom O High Level Traffic

Cugtom
Frotocol

Oaxa O aX4-Stream @ 2X14-Lite

Mode Settings

Mode System Init A

P

M_AXI_LITE_CHL
Transaction Depth 16 M
MNumber of AXl Channels
={s_axi_aclk
=s_axi_aresetn CH-1 Base Address (Hex) |0x00000000 High Address (Hex) OxFFFFFFFF
Max Command Retry Count [1..256]
4 Max Clocks to Run 2560 [15..42848672895]
one =
status[31.0] =
COE File Paths
Address COE File ‘ulsfbu|Idsfa»{l_am’slm_prujfsrc;’slmulatlum’addr‘cce‘ ‘ ¥ Browse ‘ + Edit
Data COE File ‘ulsfbu|IdSfam_am’slm_pmjf’srcfslmulatlum’datacue‘ ‘ ¥ Browse ‘ # Edit
[bI+]

e]

15. Select OK. This should synthesize the Traffic Generator IP.

AN002 www.4dsp.com page 16 of 28

http://www.4dsp.com/

ANO002 Tutorial: StellarlP Interface to AXI =™ =T

rl.0

5.3 Creating the test bench

We now create a new file, axi_fmc110_tb.vhd, by instantiating the blocks as shown below. An
example on how to do this has been provided.

Xilinx
Traffic axi_lite=——3| CMD ADCO
Generator
AXI
FMC110
Controller FMC110
ROM Daughter
Data ——axi_stream—3) DACO Card Model
Generator
ADC1
ROM
Data [—axi_stream=—| DAC1
Generator —external signals=»

Figure 5: Block diagram of simulation top-level

5.4 Running Simulation

Once the top-level test bench is ready we can Run Simulation. Vivado will process the design files
and a waveform viewer will appear.

5.4.1 Command Interface

We first inspect that the appropriate commands are being sent from the Xilinx Traffic Generator
Block through its AXI-Lite Interface. Add all the top level entity signals from the Xilinx Traffic

Generator entity to the waveform viewer.
|

Figure 6: Waveform view of the Traffic Generator

AN002 www.4dsp.com page 17 of 28

http://www.4dsp.com/

ANO002 Tutorial: StellarlP Interface to AXI =™ =T

rl.0

We can also confirm that commands are arriving in fmc110_ctrl.vhd, for example the register
NB_BURSTS_REG should get the value ‘1’. This demonstrates that conversion from AXI-Lite to
StellarlP commands is working.

Once the Traffic Generator sends all its commands we should see DONE="1" and STATUS[1:0] = “01”
indicated success.

5.4.2 ADC and DAC Interfaces

For the ADC we should see ADCO_TDATA with data when ADCO_TVALID="1". This data is generated in
the FMC110 Model and captured by the FMC110 Controller.

For the DAC we should see data coming out on DACO_TDATA when DACO_VALID="1". We can trace
this data going to a memory entity inside the FMC110 IP Block. Once a trigger is sent, through the
Traffic Generator, data is read out of the memory and seen on the external pins.

E axi_fmcl10_tb_behav.wcfg* x

Figure 7: Waveform view of DACO and ADCO

We have successfully simulated the design. We were able to send commands to the StellarIP Block,
we were able to capture data from the ADCs and we were able to play a waveform in the DACs.

AN002 www.4dsp.com page 18 of 28

http://www.4dsp.com/

ANO002 Tutorial: StellarlP Interface to AXI =1 &S

6 Synthesize

To have a synthesizable design we must make slight modifications to the simulation design. We
switch the Xilinx Traffic Generator to Xilinx JTAG to AXI-Master. This gives us more control; it allows
us to read as well as write and allows us to repeat a sequence of commands, for example, to capture
ADC results multiple times. Also, we must capture the ADC data where we can view it; in simulation it
is possible to add any signal to the waveform viewer. For synthesis we use the Xilinx Integrated Logic
Analyser (ILA).

6.1 File Descriptions
The following files are used to synthesize the design and described below.

Src/
F— axi fmcl10.vhd

F— conversion/* (See Section 3)

F— data gen/
— axi stream send.vhd

waveform.csv

F— sip fmcl10/* (See Section 2)

|— synthesis/

| I— axi fmcll0 synth.vhd
|— axi fmcll0 synth.xdc
F— brd clocks.vhd

|
|
| L— p110.vhd
L— tcl/

F— fmcl10 capture.tcl
|— fmcll0 generate.tcl
— fmcll0 init.tecl

Table 5: Synthesis file descriptions

File or Folder Description

synthesis/axi_fmc110_synth.vhd Top level entity

synthesis/brd_clocks.vhd Clock generation entity. Accepts a differential external clock
and generate a 200 MHz and a 125 MHz clock using a PLL
(pll0.vhd)

synthesis/axi_fmc110_synth.xdc Constraint file for VC707 + FMC110.

AN002 www.4dsp.com page 19 of 28

http://www.4dsp.com/

ANO0O02 Tutorial: StellarlIP Interface to AXI "!'DSP

rl.0

Note: When creating a constraint file it is important to know
that everything is case sensitive, unlike VHDL. The signal
names must match the case of the top level signal names.
The Vivado commands need to be lower case, i.e., it is
important to have set_property and not SET_PROPERTY.

python/ila_raw.py

A script written in the Python programming language used to
read a CSV file, extract the data of interest, and convert the
data to the format required for processing. This is used on
python/waveform.csv which was generated with the Vivado
command write_hw_ila_data. The output of the Python
script is python/samples.txt which can be plotted and
analysed with VisualAnalog using the template python/
FMC110.vac.

python/FMC110.vac

Design file for Analog Device’s VisualAnalog Software, used to
visualize and process data samples.

tcl/ fmc110_init.tcl

Vivado TCL script to send commands through the Xilinx JTAG
to AXI Master IP. Used to initialize the FMC110 Card. More
information in the Running Design section.

c/sipif.cpp

Modified read and write functions in the reference
application for VC707+FMC110. Used to log what is being
written and read.

6.2 Modifying the project for synthesis

1. In Flow Navigator select IP Catalog

2. Select JTAG to AXI Master

Eile Edit Flow Tools Window Layout

Ao X D> NG

Flow Mavigator «

A=

4 Project Manager
% Froject Settings
&% add Sources
1F IP Ccatalog

Pro

Sour

o =

s

3. Configure the IP Block with the following settings

ANO002

www.4dsp.com page 20 of 28

http://www.4dsp.com/

ANO0O02 Tutorial: StellarlIP Interface to AXI "!'DSP r1.0

Customize IP

JTAG to AXI Master (1.0) '

ﬁ Documentation [IP Location €3 Switch to Defaults

Show disabled port
1] St el i) peis & Componert Name [jtag_ax_0
AXI Protocol AXIALITE ~

A Datawidth |32 -

aclk .
M_AXIE
aresetn 2 :

Ok | Cancel

4. Select OK. JTAG to AXI Master IP should now synthesize.
In simulation the ADC output could be added to the waveform viewer without being connected to

anything. For synthesis, to view the ADC output, we use the Xilinx Integrated Logic Analyzer (ILA) IP
Block.
5. In Flow Navigator select IP Catalog

6. Select ILA (Integrated Logic Analyzer).
7. Configure the IP Block using: Interface = Native, Number of Probes = 1, Probe Width = 132.

Customize IP

ILA (Integrated Logic Analyzer) (4.0) '

ﬁ Documentation [IP Location 3 Switch to Defaults

Component Name [ila_o]

[¥] show disabled ports

[=

‘To configure more than 64 probe ports use Vivado Tcl Console

General Options Probe_Ports(0..0)

® Native O 24 .

MNumber of Probes [1..1024]
Sample Data Depth |1024 -

[Trigger out Port

[Trigger In Port

Input Pipe Stages

Trigger And Storage Settings

[capture Cantrol
[Advanced Trigger

Same Number of Comparators for All Probe Ports

Mumber of Comparators

E

[cancer |

[« b+

8. Select OK. ILA should now synthesize.
In simulation a reset is created by using the VHDL after keyword that won’t synthesize. For synthesis

we use the Xilinx VIO (Virtual Input/Output) IP Block.

AN002 www.4dsp.com page 21 of 28

http://www.4dsp.com/

ANO0O02 Tutorial: StellarlIP Interface to AXI "!'DSP r1.0

9. In Flow Navigator select IP Catalog.
10. Select VIO (Virtual Input/Output).
11. 4Configure the IP Block using, Input Probe Count =1, Output Probe Count =1,

Customize IP

V10 (Virtual Input/Output) (3.0) '
i Documentation [IP Location €3 Switch to Defaults
] Show disabled ports component Name
M =

[To contfigure more than 64 prabe parts use vivado Tel console |

General Options PROBE_IN Ports(0..0) = PROBE_OUT Ports(0.,0)
Input Probe Count [0..256]
Output Probe Count [0..256]

[# Enable Input Probe Activity Detectors

[coneer |
12. Select OK. VIO should now synthesize.

6.3 Creating the top level

The final block diagram should look as following:

Xilinx JTAG |[€é——axi_lite——)|

To ADCO ——axi_stream=— Xilinx

ILA
AXI Master AX|

FMC110
Controller

DAC

Pattern | ——axi stream=— DACO
Generator

ADC1 [——axi_stream=— Xilinx ILA

DAC
Pattern [——axi_stream=—— DAC1
Generator F—-external signals—»

Finally we can select Run Implementation.

AN002 www.4dsp.com page 22 of 28

http://www.4dsp.com/

ANO0O02 Tutorial: StellarlIP Interface to AXI "!'DSP r1.0

6.4 Running and Initialization

Once we have successfully generated a bit file we open Hardware Manager and select Program
Device to program the bit file to the FPGA.

O] PERWIL NUWIsE Ihel b
Report Utilization
%]j Report Power

Program and Debug
% Bitstreamn Settings
¥ Generate Bitstream
4 [Hardware Manager
B Open Target
ﬁ? Program Device
3:? Add Configuration Me

i) @ = 4k B

|

[OL

6.4.1 Initialization Script

With the FPGA programmed and with the Hardware Manager opened we must execute the
initialization script, fmc110_init.tcl, in the Vivado TCL console to configure the FMC110 daughter
card.

source fmc init.tcl

The command sequence is a lot longer than it was for simulation; we are running on hardware and
we must correctly configure all devices. Generally this requires a careful reading of the datasheet for
each device (ADCs/DACs/Clock Synthesizers/etc...) and figuring out what registers, if any, need to be
configured. 4DSP has done this and provides a reference design that performs the complete
configuration in software.

By modifying the write and read wrapper functions used in the 4DSP reference design application for
VC707+FMC110 (see sipif.cpp) we can obtain a complete list of all commands sent.

Read and writes logged from the The same read and writes done through
VC707+FMC110 reference application | Xilinx JTAG to Master through the
by modifying sipif.cpp. fmcll0_init.tecl script

00002408 00000003 axi lite read 2408 ;#00000003
00002d24 00000000 axi lite read 2d24 ;#00000000
00002d24 00000020 axi lite write 2d24 00000020
00002d24 00000000 axi lite write 2d24 00000000
00002d24 00000000 axi lite read 2d24 ;#00000000
00002d24 00000040 axi lite write 2d24 00000040
00002d24 00000000 axi lite write 2d24 00000000
00002d24 0000001e axi lite write 2d24 0000001e
00002d25 00000000 axi lite write 2d25 00000000
00002d26 00000000 axi lite write 2d26 00000000
00002d24 0000001e axi lite read 2d24 ;#0000001e
00002707 00000053 axi lite read 2707 ;#00000053
00002714 0000007¢ axi lite write 2714 0000007c

)
o

[
[
[
[
[
[
[
[
[
[
[
[
[

ST WEsSs==®= =
c88geeeas8as s

AN002 www.4dsp.com page 23 of 28

http://www.4dsp.com/

ANO0O2 Tutorial: StellarIP Interface to AXI "!'DSP

rl.0

Once we run the initialization script we have access to the two commands axi_lite_write and
axi_lite_read, see the file fmc_init.tcl or Xilinx UG908 Programming and Debugging for
implementation details.

6.5 Capturing ADC Data

Once the synthesized design is loaded and the FMC110 has been initialized we are ready to capture
data. For this test a 30 MHz sine wave from a function generator is being fed to ADCO.

R

Figure 8: FMC110 Data Capture

We now configure the ILA for capturing. The important signals to capture are ADCO_TDATA, and
ADCO_TVALID, trigger the ILA on adc0_valid = ‘1’ to see the ADC samples.

ILA Properties « Trigger Capture Status 40
Trigger Mode Settings Core status: | Idle | Pre-Trigger | Waiting for Trigger | Post-Trigger |
} . Window 1 of 1 window sample 0 of 1024 Total sample 0 of 1024
Trigger mace: Capture status: | Idle | | Idle || Idle |
Capture Mode Settings
Capture mode:
MNumber of windows: [1-1024] o i 0]
4 L
Window data depth: 1024 -~ [1-1024]
. . o Basic Trigger Setup 20
Trigger position in window: [0 -1023] a e | CamEEm YehE |
iz adc0_tdata[63:0] == [H] WXXK_MHOOUKKKN_KNKX ~
General Settings X = adc0_tvalid = [B] 1 A
5 e dac0_enable == [B] x -
Refresh rate (msh 415 dac0_tvalid == [B] X -

Figure 9: Trigger Configuration

Issue the ADC capture command sequence through the Vivado TCL console.

axi_lite write 2405 0000050d ;# Enable ADCO & DACO&DAC1
axi_lite write 2404 00000001 ;# ARM

axi_lite write 2404 00000004 ;# Trigger

AN002 www.4dsp.com page 24 of 28

http://www.4dsp.com/

ANO002 Tutorial: StellarlP Interface to AXI =1 &S

An ILA trigger occurs when ADCO_TVALID="1" and data appears on the waveform viewer. We can see
data arriving on ADCO_TDATA. Virtual buses were created to see individual samples and we get the
following waveform:

s LA -hw ila_l X =WVI0 -hwvio l x BB hw_ila_data_l.wcfg* x | m e

OeDdf00de2

019f0laedla?0lad

sample3 oo1ef

sample2 00lae

samplel 00d3

o -Sampled ola4d

The signal doesn’t look like a sine wave because the ADC outputs data in two’s complement form.
Also, it would be best to see the samples sequentially, not four in parallel, unfortunately there is
nothing in the Vivado waveform viewer to accommodate this. We can, however, download the
samples by issuing the following command in Vivado:

write hw ila data ila data file.zip [upload hw ila data hw ila 1]

This saves the waveform into an archive with a CSV file which has the raw captured data. Using the
provided python script (ila_raw.py) we can convert from binary strings to integers, which can be
read by Analog Device’s VisualAnalog Application.

AN002 www.4dsp.com page 25 of 28

http://www.4dsp.com/

ANO002 Tutorial: StellarlP Interface to AXI =™ =T

rl.0

Graph 6/24/2014 112235 AM Graph 6/24/2014 112235 AM
o B
FEETERE R PllE e B e |F E | b E
- Input 1 Al o
1280 1300 1320 1340 1380 1380 1400 1420 1440 1460 3 %ﬂ:fﬂfg% EOLi 1000 (EDL Z100] 250 DK SEOR CAOR] (EDL
Sample Frequency = 1000 MHz 0
08 Samples = 4082
SNR = 46 115dB a5
05 SNRFS = 52 539 dB
SINAD = 44.342 dBc El
04 -~ DC Frequency = 0 MHz
- DC Power = -25.677 dBFS 45
0.2 - Fund Frequency = 30.025 MHz
/\ /\ /\ /\ A A Fund Power = -12.483 dBFS -60
0 Fund Bins = 51
02 \/ \/ U \/ \/ \/ Ham 2 Power = 50 989 dBc i M‘L l G
o3 Pover - 4545 N e uhummm..m e
a4 - Ham 5 Power = -70.775 dBc pps
a9 - Ham & Power = -70.775 dBc
- Ham 7 Power = 62,161 dBc a2
08 Vilorst Other Frequency = 329.935 M
Worst Other Power = 76.271 dBFS 195
Noise / Hz =-145 58 dBFS / Hz
Average Bin Noise = 9171dBFS
o < >

Figure 10: VisualAnalog display of the captured data.

From the graph and FFT we see the captured data correctly represents a 30MHz signal.

6.6 DAC Results

The DAC is enabled when the following command sequence is executed:

axi_lite_write 00000001 ;# Number of bursts
axi_lite_write 00000100 ;# Burst size

axi_lite write 00000004 ;# Enable DACO
axi_lite_write 00000008 ;# Load WFM (Firmware will monitor for this command)
axi_lite write 00000004 ;# Trigger

There is a process in axi_fmc110_synth.vhd (and axi_fmc110_tb.vhd when simulating) that monitors
for a DAC load waveform command and enables the data generator (axi_stream_send.vhd) any time
it is seen. The generated data come into the FMC110 Controller through one of the AXI Slave
interfaces that was created in Section 4 for the DAC. The data gets stored inside a BRAM where it will
continuously be sent to the DAC when a trigger command is asserted.

process(clk)
begin
if rising_edge{clk) then
if axi_wdata = x"00000008" and axi_awaddr = x"00002484%" and axi_awvalid = *1' and axi_wvalid = '1' then
dac@_enable <= *1°;
else
dac@_enable <= 'B°;
end if;
end if;
end processf

Figure 11: DAC Data Generation Enable

The following 16 samples make up the sine wave that is generated.
0000, 30fb,5a81,7640, 7fff,7640,5a81, 30fb, 0000, CFO5,A57F ,89C0, 8001,89C0,A57F , CFO5

The DAC is operating at 1.0 GSPS which means that the DAC consumes a sample every 1 ns so the
pattern is repeating every 16 ns. 16 ns translates to 62.5 MHz, so we would expect to see a 62.5 MHz
signal on an oscilloscope.

AN002 www.4dsp.com page 26 of 28

http://www.4dsp.com/

ANO0O2 Tutorial: StellarIP Interface to AXI

=

rl.0

Trig'd

Al 2,26V
@: 660mv

Ch1 Mean
13.0mv

]
{
3
|
1

:
b 4
$
i

MO0 A Ch1. L),
#+70.00000 s :

Figure 12: Oscilloscope view of DACO

Connecting DACO from the FMC110+VC707 to an oscilloscope shows a waveform of 62.85 MHz, this

confirms that the AXI FMC110 Controller is working.

ANO002 www.4dsp.com

page 27 of 28

http://www.4dsp.com/

ANO0O02 Tutorial: StellarlIP Interface to AXI

=

rl.0

7 References

Vivado Design Suite User Guide Programming and Debugging
4FM Programmer’s guide

FMC110 User Manual

FMC110 Star Documentation

Xilinx AXI Traffic Generator IP Documentation

Xilinx JTAG to Master IP Documentation

Xilinx AXI GPIO IP Documentation

ANO002

www.4dsp.com

page 28 of 28

http://www.4dsp.com/

